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The influence of weak periodic wall undulations on the structure of turbulent pipe 
flow has been studied in three ways : measurements in air flow using pressure probes 
and hot-wire techniques, visualizations in water flow and numerical predictions based 
on a turbulence (k-e) model. The flows at Reynolds numbers of 30000 and 115000 
have been particularly investigated. The flow characteristics proved to be very 
different from those observed in a straight pipe. Calculations and experiments agree 
well for the mean- and turbulent-energy fields; however the detailed behaviour of 
some local quantities such as anisotropy of the Reynolds stress is not well predicted 
particularly in the crest region. So the performances and the limitations of classical 
closure have been appraised. The existence of an unsteady reverse-flow region 
downstream of every crest suggested by measurements and calculations has been 
clearly confirmed by visualizations in water flow. 

1. Introduction 
Fluid flows encountered in industry are often complex turbulent flows in the sense 

defined by Brdshaw, 1973. The study of these flows gives rise to numerous difficulties 
with respect to their experimental investigation and their numerical prediction. In  
recent years there has been an increased interest in the study of these complex flows, 
especially with a view to providing experimental data that are useful for testing and 
refining turbulence models. In this paper we study a fully developed turbulent flow 
in an axisymmetric duct with streamwise periodic wall undulations of small amplitude 
and a wavelength of the order of the mean duct diameter. The interest in this complex 
flow arises from industrial problems encountered at the C.E.A. (Commissariat a 
1’Energie Atomique, France) and related to turbulent heat and mass transfer. The 
flow presents several interacting complexities : local curvature effects near the wall ; 
more global convergent and divergent 6ffects periodically imposed; the existence of 
unsteady reverse-flow downstream of every crest; the effect of periodic sign reversal 
of pressure gradient, to which is eventually added the better-known effect of wall 
suction. 

Only few experimental studies of flow in ducts with undulating walls can be found 
in the scientific literature. We should mention however the measurements by Hsu 
& Kennedy, 1971, of the flow inside of a tube with a sinusoidal wavy wall. 

Nevertheless, much experimental data exists concerning various turbulent shear 
flows that present to a varying degree one of the complexities mentioned previously, 
but often in a different geometry. They can form a useful basis for comparisons and 
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discussions. We mention for example Perry & Fairlie (1975), Eaton & Johnston 
(1981), Smits, Baskaran & Joubert (1981), Mueller, Korst & Chow (1964);Macagno 
& Tin-Kan Hung (1967) on separation and reattachment problems; Deshpande & 
Giddens (1980), Okwuobi & Azad (1973) on the effect of cross-sectional area 
variations, Kuehn (1980), Mellor (1966), McDonald (1969), on pressure-gradient 
effects, Hunt & Joubert (1979), So (1975), So & Mellor (1973) on curvature effects, 
Thorsness, Morrisroe & Hanratty (1978), Zilker, Cook & Hanratty (1977), Zilker & 
Hanratty (1979), on the turbulent shear flow above a surface with sinusoidal 
undulations. 

In addition several numerical studies concerning the laminar or turbulent flow over 
steady or moving wavy walls have been published during the last few years (Markatos 
1978; Gent & Taylor 1976; McLean 1983), and also studies concerning locally 
constricted pipes (Lee & Fung 1970; Oberkampf 6 Goh 1974). 

The analysis of the properties of the turbulent flow in a wavy-walled pipe has been 
done in three ways: measurements in air flow; visualizations in water flow; and 
numerical predictions. The results have been compared with the ones obtained in 
classical pipe flow (Laufer 1954). 

Experimental investigations carried out in air flow have been performed within a 
range of Reynolds numbers varying from 30000 to 115000, and these two extreme 
values have received particular attention. 

We have determined mean-pressure and velocity fields, at six cross-sections located 
between two successive crests. Hot-wire velocity measurements have been extended 
within the viscous sublayer (y' = 2), a zone of great importance for the understanding 
of acting dynamical mechanisms. These hot-wire measurements have been corrected 
for the wall-proximity effect (Chauve 1980). From the corrected measured values of 
velocities, we deduced the wall-shear-stress distributions. Turbulent-velocity fields 
have been determined using hot-wire anemometry with single-wire and cross-wire 
probes. 

With regard to experiments in water, the existence of an unsteady reverse-flow 
region near the wall and downstream of every crest has been identified in photographs 
that give a qualitative picture of the results obtained in air and also a guide to 
interpreting them. 

At the same time a numerical prediction of this flow has been made using a classical 
k-s turbulence model (Jones & Launder 1972,1973). From the application of a simple 
model to describe a complex flow, useful information has been inferred concerning 
closure hypotheses, their limitations as well as their performances. 

The complexities of this flow already mentioned also present modelling problems 
and so the choice and the adaptation of the model are matters that require discussion. 
Thus the model can be a useful tool to complement and extrapolate experiments, and 
in particular to calculate quantities that cannot be reached by measurements. 

2. Experimental set-up, procedures and experimental conditions 
2.1. Description of experimental model 

An experimental model with a porous wall was designed a t  the C.E.A. and 
constructed using fritted bronze. An axial cross-section (figure 1)  shows the basic 
undulation shape. The entire model comprises nine such adjoining shapes. The tube 
thickness varies periodically but its external diameter remains constant. The tube 
is 495 mm long and was built in three parts, each comprising three undulations. The 
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FIQWRE 1. Sketch of an undulation shape. 

mean precision of the whole setting is about 1 mm on the diameter, a value that can 
be taken as satisfactory considering manufacturing difficulties. 

The manufacturing process was carried out in three stages: metal caating, pressing 
and soldering during assembly. The material used is a h e  bronze powder made of 
calibrated spherical particles of diameter d = 0.05 mm. The core of the mould is made 
of a special steel plate which was machined and ground according to the desired 
profile. Fritting of the bronze powder was obtained by firing in an oven. Every plate 
is shaped by pressing in order to give a half-shell. The forge-hammer tip was also 
shaped according to previously defined undulations of 2.8 mm amplitude. To achieve 
a definitive shape required numerous strikings. Two half-shells 165 mm long are 
joined by soft soldering to make a cylindrical stump (composed of three elementary 
undulations), then three of these stumps are fitted together, also by soldering, to make 
a porous tube 495 mm long. The three stumps were aligned during soldering using 
a chuck placed inside the tube. For the present experimental conditions, we checked 
that the tube could be considered as hydrodynamically smooth: we found that 
Reynolds number U,=d/v baaed on the diameter d of the bronze particles and on 
the nominal friction velocity U*H did not exceed 32 ; it  is therefore smaller than the 
usual limiting value of 70 (Brun, Martinot-Lagarde & Mathieu 1968). 

2.2. The aerodynamic w i d  tunnel 
The porous tube is separately located in a suction-box which is connected to an 
aspirator. The whole apparatus is attached to the exit of a blower-type wind tunnel 
with horizontal axis (Verdier 1977). The experimental model under examination is 
preceded by an airtight inlet manifold of 75 mm interior diameter and 4 m long, to 
allow the turbulent flow to become fully developed within approximately 50 
diameters. The link between this manifold and the porous tube is made with a bronze 
thimble. This thimble includes two diametrically opposite wall pressure probes and 
allows, through rotation, a check on the axisymmetry by measuring the pressure in 
several diameter positions. The link between experimental model and bronze thimble 
occurs at a crest. The model length has been fixed at 450 mm, i.e. a little more than 
eight undulations. A schematic diagram of the installation is shown in figure 2. The 
mean-flow rate at the inlet is controlled by measuring the head loss over a reference 
length in the airtight manifold, taking into account temperature and atmospheric 
pressure variations. Symmetry of mean-velocity profiles was checked along two 
orthogonal diameters. 
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FIGURE 2. Schematic diagram of the flow system. 

2.3. Probes and equipment 
A traversing mechanism is used to move probes in three directions : the longitudinal 
direction parallel to the axis of the model with a 0.5 mm precision, the horizontal 
direction in the cross-section with a 0.1 mm precision, and the vertical direction with 
a 0.1 mm precision. The use of ‘X-wire’ probes required, in addition to the previous 
mechanism one which allowed rotations about two axis perpendicular to the planes 
of symmetry of the ‘X-wire’ probes. 

The pressure probes are classical Pitot tubes connected to water micromanometers. 
Hot-wire probes are made in the laboratory ; they are designed to allow measurements 
within the viscous sublayer. The probe pins make a 50’ angle to the wall, and are 
of length about 20 mm and tip diameter 0.1 mm. Wires are made of rhodium-plated 
tungsten, of length 1.6 mm and diameter 5 pm. DISA X-probes were altered to 
minimize spacial integration effects. Specifically, the spacing between wires’ planes 
was reduced to 0.4 mm as in a previous study (Fulachier 1972). The wire diameter 
is 5 pm and the wire length is about 1 mm. The model axis is located by inserting 
a cylindrical bar inside the undulated tube : the length of this bar corresponds to four 
undulation lengths and its diameter equals the model diameter a t  the crests. Every 
probe is located relative to this reference axis. In  addition, the determination of 
single-wire probes position near the wall is controlled by an electrical contact 
visualized on the screen of an oscillograph. Distances from the wall are measured 
using a dial-micrometer giving a mm precision. 

In order to  detect flow reversal a special two-wire probe was built (Chauve 1981). 
The sensor is composed of a platinum wire of diameter 1 pm acting as a resistance 
thermometer located upstream and by a classical hot wire of diameter 5 pm. The 
distance between the two wires is 0.2 mm. The upstream ‘cold’ wire is operated with 
a constant-current circuit. The other wire is connected to a constant-temperature 
anemometer at  an overheat of 0.8. When flow reversal occurs, the upstream wire 
detects the thermal wake coming from the hot wire located upstream, as shown in 
figure 3. A similar arrangement to detect flow reversal in the outer part of a jet into 
still air was used by Antonia, Chambers & Hussain (1980). 

Hot-wire measurements are made with a constant-temperature anemometer (DISA 
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FIGURE 3. Detector of flow reversal. 

55M01), a linearizer (DISA 55D10), and an auxiliary unit (DISA 55D25); a 
correlator (DISA 55D70) is also used for 'X-wire' measurements. 

Calibration of probes is carried out on the axis of the undulated tube, straight tube 
of circular cross-section having been placed inside the model in order to suppress any 
influence from the undulations. 

The axial mean velocity was meaaured with a Pitot tube connected to a differential 
water micromanometer. For all these measurements, the influence of temperature and 
atmospheric-pressure variations waa taken into account. 

2.4. Wall friction 
The presence of undulations at the wall places severe constraints on the experimental 
determination of the wall shear stress. We know that the stress is related to the 
mean-velocity gradient in the viscous sublayer by the relationship: 7 = -,dU/ay 
where y is the distance from the wall. Then, a 'natural' method for determining the 
shear stress consists in directly measuring the mean velocity inside the sublayer with 
a hot wire. Unfortunately, the sublayer thickness is, in most cases, very small. Within 
these distances (< 1 mm) the hot wire undergoes extra cooling from the wall which 
must be taken into account, and so a special study waa conducted in a smooth tube 
to yield the corrections that have to be applied in such experimental conditions 
(Chauve 1980). Probe calibration at different distances y from the wall allowed the 
determination of the coefficients A and B that appear in the usual calibration relation 
(EB = A+BUn) where n is assumed constant. The mean velocity r i n  the undulated 
model waa obtained, at each distance, from the values of A and B corrected for wall 
proximity. Moreover, and because of wall curvature, the probe does not move exactly 
along the normal but we have verified (Chauve 1981) that errors thus introduced in 
the determination of 7p were negligible ( < 4 %) in comparison with the accuracy of 
measurements. 

2.5. Experimental Condithw 
To define reference quantities we consider a cylindrical duct of circular cross-section, 
displaying the same lateral area S, along one wavelength h and conveying the same 
flow rate aa the undulated tube. Then we define the following quantities: 

mean radius aH = 8 , / 2 ~ h ;  (aH = 39.3 mm) 

mean Reynolds number Re, = 2%, aH/v.  
mean bulk velocity c, = QH/XQ&; 
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The overall friction factor is obtained from Blasius formula: A*H = 0.316 R& from 
which we deduce : 

mean wall shear stress T~ = $piZh A*H and 
mean friction velocity U * H  = ( ~ H / p ) i .  

Two different flow rates have been considered, corresponding to 6, = 5.7 m/s and 
$2, = 21.9 m/s that is to say Re, = 30000 and Re, = 115000. Wall-suction rates are 
defined by the ratio A = vP/.iiH where vP is the suction velocity at the wall deduced 
from measurement of the aspired flow rate. 

For the suction experiments, the head loss in the airtight tube is restored to the 
same value as in experiments without suction, in order to maintain a constant inlet 
flow rate. Suction rates vary from 0 to 50.10-4 at most. 

2.6. Vi’iswzlimtions 
In order to perform the visualizations, an exact copy of the model used for the 
experimental study in air was built in Plexiglas, and set up as a branch of the 
hydrodynamic tunnel at IMST which works continuously driven by gravity. Between 
the 4th and 5th crests, nine equidistant injectors were placed at the wall in order to 
visualize particularly this region of the flow. The injected dye is fluorescein. Light 
is introduced in thin luminous sheets (a few millimetres thick). Instantaneous 
photographs were taken using a 120 Joules electronic flash with exposures of order 
1 ms. 

3. Numerical approach 
3.1. Choice of mathematical model of turbulence 

This is a ticklish choice that demands a compromise. Although it may be claimed 
that turbulence models using one-point closures have led to the development of 
efficient prediction methods for turbulent shear flows in simple geometries such as 
boundary layers, free jets and flow in straight pipes, this is not the case for complex 
flows. These latter flows throw up many unsolved problems in turbulence modelling. 
These problems have several different sources. 

For instance, Bradshaw (1973) showed in particular that an extra strain rate 
superimposed on the flow has an effect of unexpected magnitude on the flow structure. 
Very often, this effect is an order of magnitude higher than would be expected from 
the only additional explicit terms in the equations. Taking into account such an effect 
in numerical modelling is a difficult task. 

Also, we know that turbulent flows in complex geometries promote the development 
of ‘coherent structures’ which are clearly revealed in flow visualization and play an 
important dynamic role. Again, in this case, we don’t know how to make the 
appropriate modifications in the models. 

Indeed there remain many other turbulence-modelling problems of a phenomeno- 
logical kind. For instance, problems concerning the intermittency near free boundaries 
or emall-scale intermittency, or those related to the history of turbulence. 

Under such conditions we did not try, within the scope of this study, to include 
improvements in modelling that would be specific to the present study but which 
would not have general implications. Our aim is rather to try to assess the 
performance of a widely accepted classical closure for the case of a complex turbulent 
shear flow. The k-E: model of Jones & Launder (1972) seemed to us to meet these 
requirements. Indeed, this model has been widely used for calculation of turbulent 
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shear flows, allowing the closure hypothesis to be substantiated in an extensive field 
of applications. In general, it  yields a good compromise between precision and 
universality, between performance and tractability. Of course, the model also allows 
calculation of additional quantities that would be difficult to measure, such as the 
turbulent-energy dissipation rate or energy balance, and 80 it complements 
experimental investigations. 

In  the c&8e of the tube with an undulated wall we have applied the low- 
Reynolds-number version of the k-€ model (Jones & Launder 1972, 1973) in order 
to describe completely the viscous sublayer adjacent to the wall which plays such 
an important part in the flow dynamics. This method prevents the use of any wall 
function to specify boundary conditions. In the present situation, the pressure 
gradient varies strongly along an undulation and the flow does not respond 
instantaneously to its variations. A lag is expected to appear between the local 
pressure gradient and the flow response. To allow for this it has been demonstrated 
by Hanratty, Abrams & Frederick (1983) that inclusion of some relaxation mechanism 
is of central importance. The k-s model in which the relaxation phenomenon is 
inherent to the transport equations of k and E ,  seems to be better suited to this case 
than any algebraic model based on turbulent viscosity. Moreover, we have tried to 
introduce the effect of periodic curvature of the wall by taking numerical coefficients 
of the model as functions of a curvature parameter according to a modification 
proposed by Launder (1975). 

3.2. Analytical description of the undulated wall 

We use a curvilinear mesh fitted to the shape of the undulations at the wall (Schiestel 
1979), in order to describe carefully the viscous region adjacent to the wall where large 
gradients of turbulent quantities prevail. This choice also facilitates the introduction 
of wall boundary conditions. The curvilinear net has been obtained by a conformal 
mapping defined by analytic functions. The methodology is very similar to that used 
by Gent & Taylor, (1976) and Taylor, Gent & Keen (1976) also based on conformal 
mapping, but for a somewhat different shape of undulation. 

One can briefly sum up the steps of the procedure in the following way. We first 
note that the analytic function [ = f ( q )  which maps the exterior of a circle onto the 
exterior of a closed contour can be developed as series of q of the form: 

+m 

[ =  E arnqrn. 

The corresponding transformation is then composed right and left by the elementary 
transformations 

m--1 

, q = eiKz with H = 2na,/A, ie = - 1. 6 = ,-iKZ 

The resulting global transformation can be written (figure 4a)  : 

1 
2 = z+- In Q(eiKZ), 

K 
where Q is defined by 

&(r) = z am-lr*. 
m a 0  

This analytic function allows the half-plane y 3 0 to be mapped onto the half-plane 
above the periodic boundary. 

The shape of the boundary curve is defined in parametric form by 2 = t + is(t) (or 
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FIGURE 4. (a)  Sketch of successive transformations. ( b )  Computational curvilinear grid. 

by c = es(t)-it). The method of Kantorovich & Krylov (1964) allows the determination 
of the change in variables t = t (7)  such that the function [ ( q )  = 9t(7)3 is holomorphic. 

We find to a first-order approximation that 

1 
Z =  z+-ln K (a,+aleiKZ+a2e~iKZ). 

This transformation acts on an infinite half-plane, but in fact the interval in the 
present problem remains finite. So, in order to reduce residual undulations on the tube 
axis, an extra term has been added : 

1 
Z = z + - In (a-, e-iKz + a, + a, eiKz + a2 eaiKz). 

K 

The following coefficient values have been used : 

a, = 0.9905, a, = 0.1589, a2 = 0.0220, a_, = -aleMaK. 

The boundary curve thus obtained approximates the shape of the undulated wall 
with a precision of 0.2 yo of tube radius (i.e. 1.5 % of the amplitude of undulations), 
an accuracy which is distinctly superior to concrete model realization (figure 4b). The 
residual undulations on the tube axis are entirely negligible. 
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3.3. Governing equations 
Equations of motion for the mean flow and turbulence transport equations have been 
written in curvilinear orthogonal coordinate systems. They are aa follows: 

momentum equations 

V ( 1 )  q + v ( 2 )  u, U,--J(l) q + J ( 2 )  u, u, 
=--- ’ a’ V (  I )  R,, -V(2) R,, + J( 1) R,, - 4 2 )  R,, +H( 1) R,, ; 

P aY(1) 

V ( 1 )  u, U2+V(2) q + J ( l )  u, U2-J(2) q 
= ---- a’ V(1)Rl,-V(2)R,,+J(2)R,l-J(1)R,,+H(2)R,,; 

P aY(2) 

V ( 1 )  Ul+V(2) u, = 0 ;  continuity 

turbulent-kinetic-energy equation 

V (  1) (kUl) + V ( 2 )  (k  U,) = 9 - e + V (  1) ( CT k a Y ( l )  &) + v ( 2 )  ( b k  K, aY(2) ’ 

g k  = v+vt; with 

turbulent kinetic-energy dissipation-rate equation 

V 
with 

CT, = v+A, Cl,= 1.44, Gas= 1.92, C;, = 2.0; 
1.3 

4, = -vr(-+--u1J(2)-u,J(1)), au, au, 
aY(2) aY(1) 

k2 
Re, = -. 

V6’ 
f, = 1-0.3 exp (-Re$), 
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Each of the transport equations can be written in the general form 

where 

(derivation operator), 
1 a(rJi4) 

rJi ay(j) V ( j ) +  = -- 

dy(j) = Jidy, (infinitesimal length element), 

D(Y1’ 
J =  1 D(y,, y: I ) , j = 1,2 (Jacobian determinant), 

with 2 = Y,+iY,, z = yl+iy,. 

turbulent flows. 
It is well known that longitudinal curvature may have a large influence on 

Noting that the production rate of turbulent kinetic energy can be approximated 
b s  

where the curvature parameter is 

J(2) represents the longitudinal curvature of the curvilinear coordinate system, and 

According to Bradshaw (1969) we introduce the Richardson number: 
is usually close to the streamline curvature. 

2U1J(2) 1 a(JiU,) 
(au,/ay(2))2 3 ay0’ Ri = 2S(1 + S )  = 

Launder (1975) suggested that the characteristic time (aU,/ay(2))-’ be replaced by 
k / s ,  which is of a similar order of magnitude. He also suggested the use of a modified 
Richardson number 

Ri’ = U ,  J(2) k2 a(JiU,) 
s2J; ay(2) * 

The C,, coefficient in the transport. equation for s is then replaced by C,, (1 - 0.25 Ri’). 
Numerical calculations have been carried out with and without this modification in 
order to assess its importance. 

3.4. Numerical resolution 
The motion equations have been solved in primitive variables. Shifted grids 

(figure 5 )  have been introduced for the calculation of velocity components (Amsden & 
Harlow 1970). 

The basic net of discretization points presents 22 points in the longitudinal 
direction and 40 points along a radius; the mesh is contracted near the wall such that 
the ratio between two contiguous steps in space is constant and equal to 0.8. 
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FIG. 5. Discretization cell. 

Discretized equations are obtained in the transformed plane by the finite-volume 
approach. This method consists of an integration of the differential equations in the 
cell volume surrounding a net point (Patankar 1980; Gosman, Khalil & Whitelaw 
1977). Convection terms are approximated using an upwind scheme. This scheme 
introduces an artificial viscosity vlalse which has been estimated by De Vahl Davis 
& Mallison, quoted in Patankar (1980). We notice that in the core region, the velocity 
vectors are almost aligned with coordinate lines. Near the recirculating zone 
(figure 12) the velocities become weak and in this critical region we found that the 
ratio vblse/vt remained below 8 %. The solution algorithm is developed on the basis 
of the calculation procedure of Pun & Spalding (1977) for elliptic flows with weak 
recirculation. The discretized equations, written in a linearized form, are solved by 
iterations using a line-by-line procedure. The solution for each variable on a 
cross-stream section is performed before advancing the sweep (NEAT arrangement, 
Pun & Spalding 1977). Cell-wise continuity is enforced by solving a pressure-correction 
equation but is also preceded by a strip-wise adjustment of overall continuity 
enforcing the fixed flow rate in a cross-section, with consequent pressure changes over 
the remainder of the field. This method of Pun & Spalding haa been d a p t e d  to 
curvilinear geometry. Calculations are run, undulation after undulation, from the 
inlet down to the fourth crest. Boundary conditions at the inlet are given by steady 
profiles in a straight tube obtained numerically using the same turbulence model 
(Schiestel & Chauve 1982). For subsequent undulations, upstream boundary con- 
ditions are given by the solution already obtained at the exit of the previous 
undulation. Exit boundary conditions for every undulation assume zero second 
derivatives for each calculated function at a crest, where there is no recirculation. 
Boundary conditions, at the wall specify vanishing of the quantities U,, U,, k, and 3. 

Owing to the nonlinearity and the coupling of the equations, a combination of 
underrelaxation and linearization of source terms is necessary to ensure convergence 
of the overall procedure. Convergence is controlled through residual-sources evolution 
and settling of calculated values at preselected nodes. 
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4. Experimental and numerical results 

4.1.1. Mean-pressure field 
Variations of the overall friction factor A, = 4a, AplApGk are shown in figure 6 

as a function of Reynolds number Re,. There is an important increase in A, due to 
the presence of undulations. In the undulated pipe, these variations are well 
correlated by the following empirical relation: A, = 37.9 ReGo.82. This relation 
departs from the classical Blasius formula over the range, decretlsing with increasing 
Reynolds numbers. Good agreement between experiments and calculations is found 
at a Reynolds number of 115000. 

In  the presence of wall suction and for suction rates varying from 0 to 20.10-4 the 
resulting increase in head loss approaches the value obtained in circular straight pipes 
at higher Reynolds numbers (table l),  (Verdier 1977; Elena 1977). Thus for 
Re, = 110000 we corroborate the results given by Verdier. 

Radial variations of pressure, relative to its value on the axis, are shown in 
figure 7 (a,  b) at four sections between two successive crests. They indicate a minimum 
value at the crest and a maximum value in the trough. Sign changes in p)(r) follow 
roughly the changes in wall curvature. However, at  a Reynolds number of 30000, 
a change of sign occurs upstream of section I1 because of the existence of unsteady 
reverse flow. At a Reynolds number of 115000 numerical predictions are in good 
agreement with experimental results. At 30000, in spite of poorer agreement, we note 
that at  section I1 @ r )  is still negative, revealing the previously noted lag. 

If we now consider the longitudinal evolution of the mean pressure, plotted in 
figure 8, we observe the presence of a phaae shift between pressure-distribution curves 
and wall undulations. This is strongly pronounced at a Reynolds number of 30000 
and is practically non-existent at 115000. This result is again noticeable, although 
much weaker, on calculated curves. Flow reversal would explain the phase shift 
observed at low velocities. An increase in the Reynolds number results in a more 
symmetrical longitudinal distribution, reflecting the extreme situation of a perfect 
fluid (Verdier 1977). 

Calculated pressure contours, plotted on figure 9, supported the preceding remarks : 
in particular, we note that contour curves for the two Reynolds numbers coincide 
in the convergent region while there is significant deviation in the divergent region 
where reverse flow occurs. 

4.1. The mean fields 

4.1 -2. Mean-velocity field 
Experimental and calculated profiles of mean velocity are presented in 

figures lO(a)-(d) for 4 sections, the first being located at the 4th crest and the others 
regularly spaced within one undulation at two Reynolds numbers Re, = 30000 and 
115000. These profiles are plotted in semi-logarithmic form, values are normalized 
with constant friction velocity U,, equal to that in a straight tube at the same 
Reynolds numbers as defined in 82.5. The universal logarithmic law has been drawn 
for comparison. 

At section I, measured and calculated profiles are distinctly different from the 
universal profile. In  fact, the existence of a strong shear stress at the crest implies 
upward-shifted profiles lying above the universal profile, particularly for low values 
of y+. At section 11, a region where the wall shear stress is very weak, profiles are 
shifted downward, below the universal profile. Half-way between two crests, at 
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FIGURE 7. Radial distribution of pressure p = 2(p(r) --p(O))/p@. (a)  Re, = 30000 (-, 
experiments; . . . . . . , calculation). (b)  Re, = 115OOO (-, experiments; ----, calculation). 
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FIGURE 8. Longitudinal mean-pressure distribution, ReH = 30000 (+-I, experiments; 
. . . . . . , calculation), Re, = 115000 (0-0, experiments; . . . . . . . , calculation). 

FIGURE 9. Pressure contours (----, Re, = 115000; . . . . . ., Re, = 30000). 

section 111, the wall shear stress remains weak. An increase in cross-sectional area 
results in decreasing velocities, this effect being particularly noticeable in the core 
region (y+ > 100). So, velocity distributions are distorted but remain generally below 
the universal curve. These results are similar to those obtained by Nikuradse and by 
Okwuobi & Azad (1973) and Khabakhpasheva, Yefimenko & Gruzdeva (1978) in a 
conical diffuser. At  section IV,  the wall shear stress reaches a value close to that 
corresponding to the equivalent straight tube ; as a result, velocity distributions are 
grouped around the universal log law. One can also notice that, compared with the 
other sections, discrepancies between calculated and measured profiles are less 
noticeable. Of course, the constant flow rate implies the periodic increase and decrease 
of velocity profiles as previously described. This is a geometrical consequence 
independent of any closure hypothesis on the Reynolds stress. 

Generally, numerical predictions give the same trends as experimental measure- 
ments with regard to the relative position of mean-velocity profiles compared to the 
straight tube profiles and with regard to their evolution between two successive crests. 
Nevertheless, there are discrepancies for the actual magnitudes of the mean velocities. 

The non-existence of a dynamic-equilibrium region seems to be a direct consequence 
of the complex character of the flow as it undergoes variable curvature effects and 
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RIXJRE 10. Mean-velocity profiles: (a) Section I;  (b)  section 11; (c) section 111; (d )  section IV. 
Re, = NO00 (+, 0,  0 ,  V experiments, . . . . . . calculation); Re, = 115000 (0, 0, 0 ,  V, 
expenments, ---- calculation). - straight-pipe universal profile. 

is in continuous reorganization. It should be noted that the above discrepancies are 
less marked at a Reynolds number of 115OOO. 

It is worth noting the calculation in Jackson & Hunt (1975) and Sykes (1980) for 
the turbulent-boundary-layer flow over a small hump with shallow slope. These 
authors find that an inner layer exists close to the surface where the stresses are always 
in equilibrium. Outside this region the Reynolds stresses are subjected to a strong 
distortion. The inner region turns out to have a thickness of order U, LIU, which, 
for the values in a pipe ( A  N a ,  U, N uH), reduces to a layer of depth less than 2 mm, 
which corresponds precisely to the depth of the viscous and transition regions. 
Consequently this fact confirms the non-existence of an equilibrium zone. 

4.1.3. Wall region 

Figures 11 (a)-( f )  show the mean-velocity profiles for y+ < 50 on a linear plot, with 
U*H as the reference velocity. We have drawn for comparison the representative curve 
of the empirical relation given by Spalding (1961). 

y+ = u++B 
3!  

(with B = 0.1 108 and x = 0.04) and recommended by Hinze for flows on a flat plate. 
Measured and calculated profiles are distributed on both sides of the Spalding relation 
according to variations in wall curvature. In  the diverging part of the duct 
(4h < z < 4A +$I) experimental measurements very near the wall are only indicative, 

3-2 
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FIGURE 11. Near-wall mean-velocity profiles. (a),  ( b ) ,  (c): Re, = 30000 (experiments: sections4A(I), +; 4A+iA(III), # ;  4A+& A; 4A+& .; 4A+$A(II), 0 ;  4A+iA(IV), V; calculation, ...... ). 
(d), ( e ) ,  (f). Re, = 115000 (experiments: sections 4A(I), 0; 4A++A(III), 0 ;  4h+iA, A;  4A+%A, 
0 ;  4A+fA(II), 0 ; 4h+iA(IV), V; calculation, ---). - streight-pipe profile. 

because of the occurrence in this region of non-stationary reverse flows that disturb 
the measurements: in fact, the hot-wire sensor is only sensitive to the modulus of 
the velocity vector. All experimental results presented here are corrected for the effect 
of wall proximity (Chauve 1980). For Re, = 30000 and yf < 20, measured profiles 
and calculated profiles (figures 11 a-c) are in the same relative positions. On figures 
11 (b, c), we notice that velocity profiles exhibit an inflection point, with a region 
of negative velocities for the calculated distribution at  section 4h ++A. For 
Re, = 115OOO and yf < 20, except for section 4A+& the relative positions of 
profiles (figures 11 d-f) are identical. The calculated profile at section 4A +:A is slightly 
distorted compared with the measured distribution: also the calculation does not 
indicate negative velocities. The smallest velocity occurs at section 4h +;A, which 
corresponds in practice to the location of the inflection point of the wall undulation. 
Negative velocities are found at  Re, = 30000. This result is clearly shown in 
figures 12 (a, b) which feature a velocity-vector plot in the near-wall region. It appears 
that, in the converging part of the flow and very close to the wall, velocity vectors 
are parallel to the wall and correspond with its curvature, even though in the 
diverging part some deviations appear which reveal the appearance of recirculating 
flows at  a Reynolds number of 30000 (figure 12a). 
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FIQURE 12. Velocity vector plots: (a) Re, = 30000; (b)  Re, = 115000. 

\ 
I 

FIQURE 13. Pressure evolution along pipe wall. Re, = 30000 (+-m, experiments; . . . . . . , 
calculation); Re, = 115000 (0-0, experiments; ----, calculation). 

Near the wall, the comparison between pressure values extrapolated from measured 
radial distributions and calculated values (figure 13) shows good agreement at the 
two Reynolds numbers under consideration. For Re, = 30000, these distributions 
of limiting values at the wall are more dissymmetrical than for Re, = 115000; this 
may be caused by the distortion of the velocity field due to the reverse-flow region 
(Hsu & Kennedy 1971). Along the axis of the model, the amplitude of pressure 
variations is reduced by a factor of about 10. It appears then, that weak amplitude 
wall undulations produce an effect on the near-wall pressure field which is one order 
of magnitude larger than the pressure drop between two successive crests. Indeed, 
this depends very much on the flow velocity and horizontal lengthscale. 

From mean-velocity measurements within the viscous sublayer we obtained 
friction coefficients, plotted in figure 14 along with calculated values, which are in 
qualitative agreement. In particular, the extrema are practically at the same location, 
although they attain higher values in the calculation. The minimum occurs in the 
diverging part of the duct and the maximum in the converging part just after the 
inflection points of the wall waviness (Hsu & Kennedy 1971 ; Thorsness et al. 1978; 
Zilker, Cook & Hanratty 1977). The smallest values of h,(s) correspond to  the region 
of the flow where instantaneous reverse flow occurs. The extent of this region appears 
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I 

FIGURE 14. Wall-shear-stress coefficient A ,  = 87,/plis. Re, = 30000 (+-m, experiments; 
. . . . . .,calculation;----,Blasiuscoefficientforstraightpipe). Re, = 115000(0-0,experiments; 
____ , calculation ; ---, Blasius coefficient for straight pipe). 

to be controlled by Reynolds number (Eaton, Johnston & Jeans 1979). Indeed, 
pressure and velocity measurements, along with friction coefficient distributions, 
corroborate the essential role of this parameter; an increase in Reynolds number 
results in a collapse of the reverse-flow region. This effect seems consistent with an 
increase in turbulent transfer at high Reynolds numbers. The notion that one can 
move from a separated to a non-separated region by increasing flow rate is suggested 
by the analysis ofZilker & Hanratty (1979) who plot the evolution of amplitudelength 
ratio (2xu/A U,)  versus dimensionless wavenumber in various situations. The values 
of dimensionless wavenumber for present cases are 5.4 x for Re, = 30000 and 
1.7 x low3 for Re, = 115000, falling respectively in the separated and the non- 
separated zone delimited in Zilker & Hanratty’s (1979) diagram. Although 
experimental and calculated results (figure 14) are qualitatively similar, the 
quantitative differences between the two Reynolds-number cases are not predicted. 

The existence of a region near the wall where unsteady reverse flow occurs 
downstream of every crest has been confirmed by signal analysis from the special 
hot-wire-cold-wire probe (52.3). This analysis shows clearly the spreading of this 
region downstream of the inflection point of the wall undulation and the growth with 
decreasing Reynolds number (Chauve & Schiestel 1981; Eaton et al. 1979). 
Visualizations made in water confirm all the results obtained in air (Chauve 1981 ; 
Chauve & Schiestel 1981). Also, dye injection at the wall at several sections along 
an undulation has shown the non-stationary character of observed reverse flow. The 
existence of reverse flow has been clearly established between the 4h +;A and 4A +:A 
sections (figure 15, plate l),  the injected dye never flowing upstream beyond the 
4h + ih section, which corresponds to the wall inflection point. However, these 
visualizations did not allow a precise definition of the location downstream where no 
reverse flow occurs. The characteristics of the hydrodynamic gravity-fed tunnel at  
the IMST precluded experiments at Re, = 115000. 
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FIGURE 15. Instantaneous picture of reverse flow. 

Plate 1 

(Facing p. 64) 
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4.1.4. Momentum balance 

over an undulation, we considered each term in the momentum balance equation. 

surface 9': 

In  order to determine the contribution of friction forces to the overall head loss 

The following general equation, written for a volume Y of fluid bounded by a 

is applied to the case of a domain bounded by the lateral undulated wall and by two 
cross-sections Zu and & located at two consecutive crests. The lateral undulated wall 
will be denoted by Z,. Equation (1) is now written, after projection to the longitudinal 
axis, taking into account stationarity and periodicity hypotheses and neglecting body 
forces : 

JJzl 71, 3 d~ - Jjz1 pn1 d~ + Jjzu p d~ - SI,, p d~ = 0, (2) 

withcri, = -pS,,+~~,and7~, = p (  Ui,,+ U,,t) where U,,,standsforcovariantderivative 
given in $3.3. Equation (2) can also be written: 

-F+C+na2(0) (@i , -@d)= 0. (3) 

Since the wall curvature remains very weak, it can be assumed to agood approximation 
that F N -/I jjzi U!, n2 dY. 

After normalization we obtain: 

iA*F-+A*p+iA* = 0. ( 5 )  

The terms in ( 5 )  have been calculated both from numerical results and from 

Equation ( 5 )  applied to the case of the equivalent straight tube gives: 
experimental results and are given in table 2. 

iA*F = @*Ha (6) 

If we use the Blasius formula we obtain = 0.003 at Re, = 30000, and 
;AaH = 0.002 15 at Re, = 115000. Owing to experimental difficulties in determining 
AaF and uncertainties in estimating the limiting wall values of pressure in the A,,p 
determination, it was not possible to get an exact experimental balance. 

In the case of a tube with an undulated wall, the overall head loss between two 
consecutive crests is compensated on the one hand by viscous friction forces and on 
the other hand by pressure forces on the lateral wall boundary. It is found that this 
overall head loss is about twice that which would exist in an equivalent straight tube 
in which only viscous friction forces act. More precisely, wall undulations produce 
pressure forces on lateral boundaries that are larger in magnitude than the increase 
in wall friction (compared to the straight tube case). 

4.1.5. Remarks on wall-curvature effects 
The most important effects of wall curvature are not those that appear explicitly 

in the momentum equations but the indirect effects that influence the turbulence field. 
These latter are often an order of magnitude larger than the mere inclusion of explicit 
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Calculations Experiments 

Reynolds number 30000 115000 30000 115OOO 

(ill* x 1 0 2  0.583 0.401 0.772 0.336 
(dA*F) x lo2 0.390 0.278 0.166 0.158 
(iA*P) x lo2 0.193 0.123 0.255 0.0424 

TABLE 2. 

additional terms would lead one to believe (Bradshaw 1973). Experiments in a 
boundary layer over a curved wall show that the turbulence level is increased on a 
convex wall and is decreased on a concave wall. It was thus of interest to the present 
case to try to estimate curvature effects on the dynamic field. 

We introduce the Richardson number: 

Ri = 25(1 +A’), 

where 

The sign of this number governs the stability of the flow (Bradshaw 1969). One can 
then consider a fluid particle A. This particle is shifted from its equilibrium position 
and we observe the different forces that act upon it (Di Prima & Swinney 1981 ; 
Tritton & Davies 1981): 

‘ t  
* 

with U = ‘particle’ velocity 

U = fluid velocity ;rt- 
they are * 

- ‘A the centrifugal force : p - rA+y - P ( r A + y ) 3 ’  

the pressure force : 

the inertial force : PY. 

After linearization we obtain: 

If aurlar > 0 the solution is periodic and bounded and viscosity damping ensures 
stability. If aur/ar < 0 the solution is unbounded, the particle moves away from its 
equilibrium position: this case is unstable. 

In order to take into account curvature effects within the framework of the k-e 
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I Ri, 
Y 3: 

I Ri, I*- 
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model, Launder proposed to modify the numerical constant c,, by multiplying it by 
(1 - 0.25 Ri,) where Ri, represents a modified Richardson number defined by 

In this expression the timescale (aU/ar)-l has been replaced by k/s, thus the 
modified Richardson number remains finite even when aU/& goes to zero. 

For the present undulated model we chose the latter definition with the curvature 
parameter S = ( Ul/W)/(aUl/a&) where W represents the local radius of curvature 
of the longitudinal coordinate and 5, is the curvilinear abscissa in orthogonal 
coordinates. We obtain finally: 

In figures 16(a, b) we plot, for two Reynolds numbers (30000 and 115000), the 
distribution of Ri, between two consecutive crests and for five values of the ratio 
r /a(z) .  In the bulk of the flow associated with the smallest values of aU,/a&, the 
longitudinal distribution of Ri, (T/u(z) = 0.28) essentially reflects the influence of 
streamline curvature. The maximum amplitude occurs at r/a(z)  N 0.9, a region with 
high curvature and still with high velocities. Very near the wall ( r /a(z )  N 0.996) Ri, 
changes sign at a location which becomes increasingly close to that of the wall 
inflection point. Roughly, there is no significant difference between Ri, distributions 
for the two Reynolds numbers under consideration. However, for r/a(z) = 0.996 at 
Re, = 30000 the reverse-flow region causes a distortion of streamlines and thus 
the curvature effect is masked; the curvature effect appears more distinctly at the 
same ordinate in the converging part of the duct. At Re, = 115000, collapse of 
the reverse-flow region yields an almost symmetrical distribution of Ri, at 
r /a(z)  N 0.996, which follows closely the wall curvature. 

Lastly, we point out that the modification to C,, in the transport equation of the 
dissipation rate of turbulent energy produced only moderate changes in the numerical 
results. Although the values of this modified coefficient vary from about 1 to 3 around 
the usual value 1.9, the periodicity of the wall undulations characterized by successive 
changes in wall curvature produces successive changes in the sign of RiL that smooth 
and strongly reduce local curvature effects if they are compared with those in 
turbulent shear flows with constant wall curvature (Alcaraz, 1977). Taylor et al. 
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(1976) arrived at  the same conclusion concerning the flow above fixed rough 
wavy surfaces for which the surface-shear-stress distribution is not dramatically 
changed by Richardson modification but , rather, strongly influenced by undulation 
shape. The characteristic response time of the turbulent field k/E is greater than the 
characteristic time of the flow A / U .  Thus, the evolution of the turbulent field cannot 
respond directly to the periodic action of the undulated wall. 

4.2. Turbulent field 

4.2.1. Turbulent kinetic energy 
We found that the mean measured and calculatcd turbulent energy levels are higher 

than in a straight tube a t  the same Reynolds number (Laufer 1954). This increase 
in turbulent energy reaches about 30% for R, = 30000 and about 15% for 
Re, = 115000 at r /a (x )  N 0.1 (Chauve & Schiestel 1981). The experimental deter- 
mination of the three normal stresses (Chauve 1981), has shown in particular that 
large values of kinetic energy were mainly due to a rise in longitudinal velocity 
correlation u'2 caused by the presence of undulations. Moreover, experiments did not 
show significant influence of undulation on T/"2 and w'2 components away from the 
wall. This result is at  variance with Britter, Hunt & Richards, (1981), who predicted 
- that in the boundary layer over a two-dimensional roughened hill u'2 decreased and 
V 2  increased over the crest. The variations in turbulent kinetic energy between two 
successive crests are given in figure 17 (a, b). In the region of the flow accessible to 
measurements, we found satisfactory agreement between experimental results and 
numerical predictions. For y+ 2 100, we did not find the distinctly different behaviour 
in the decelerated and accelerated parts which has been encountered by Rodi & 
Scheuerer (1983). These authors found i t  useful to modify the equation to correct 
partially this spurious behaviour. In the wall region, which is not easily accessible 
to X-probes, calculations have shown that a sharp peak of energy begins to grow in 
the region where reverse flow occurs. This local energy growth is then progressively 
absorbed by the neighbouring downstream region. The peak of energy is located 
between sections 4h + ;fh and 4h +;A in the diverging part of the duct. 

These results are quite well illustrated by figure 18(a, b), which represent contour 
plots of kinetic energy in the near-wall region. We notice that the effect of increasing 
the Reynolds number is a squeezing of the contour lines against the wall. Longitudinal 
distributions of the turbulent energy normalized by its value at  the crest, are shown 
in figure 19 for a radius equal to 0.98 a@), a value that corresponds roughly to the 
location of the maximum kinetic energy at each section. These distributions between 
two crests are very different from those suggested by mere converging and diverging 
effects. In fact, in a diverging duct, the turbulent-energy level decreases steadily 
(Okwuobi 6 Azad 1973); the behaviour is reversed in a converging duct. 

In the present case, the evolution conjectured previously is disturbed from the 
inflection point of the wall undulation down to the next crest because of reverse flow. 
The magnitude of the variations is more important at a Reynolds number of 30000, 
for which reverse flow is intensified. If we look at the numerical results obtained with 
the modified k-e model, taking into account curvature effects through a Richardson 
number, very few changes were produced on the energy-field values compared with 
initial calculation. The only significant changes occur near the wall but remain 
relatively modest (figure 19). Referring to 54.1.5, we know that a turbulent flow on 
a concave wall (Ri < 0 )  is unstable and turbulent energy is increased, while a 
turbulent flow on a convex wall (Ri > 0 )  is stable and turbulent energy is decreased 
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1 

FIGURE 17. Turbulent kinetic energy profiles: (a) Re, = 30000 (+ to ., experiments; 
-, calculation); (b)  Re, = 115000 (0 to 0, experiments; - , calculation) for sections 
4h+jA/8 (j = 0 to 8). 
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FIGURE 18. Contour plots of turbulent kinetic energy: (a )  Re, = 30000; ( b )  Re, = 115000. 
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FIGURE 19. Effect of Richardson number on k(s ) /k (4A)  for r /a ( s )  = 0.98 (-, Re, = 30000; 
_ _ _  , Re, = 115000). 

(Di Prima t Swinney 1981 ; Tritton 6 Davies 1981). This result is quite perceptible 
in figure 19, but some time lag is introduced between the turbulent-field evolution 
and the periodic cross-section variations that act upon it, a turbulence-memory effect. 

4.2.2. Turbulent shear stress 
Distributions of turbulent shear stress between two successive crests are plotted 

in figure 20(a,b) for both Reynolds numbers. The general shape of the curves is 
similar to the kinetic-energy distributions but there is a marked difference between 
experimental and numerical values obtained near the crest. Negative values have 
been obtained at some locations and these discrepancies seem to be a consequence 
of the turbulent-viscosity hypothesis which relate turbulent stresses to the mean 
velocities at a point. In fact, local excess velocities developing near the crest modify 
the values of aU/ay and can lead to aV/ax  values that are not negligible, so that 
R,, may become negative. This consequence seems to be inconsistent with experimental 
results and appears to be an intrinsic limitation of the k-s model based on the 
turbulent-viscosity concept. Except for cross-sections near the crest, the agreement 
between computation and experiment is satisfactory. Moreover, calculations have 
shown the development near the wall of a sharp peak which grows in the reverse-flow 
region, as observed in kinetic-energy profiles. Relative values of shear stress are lower 
at  a Reynolds number of 115000 than at  30000. Also, radial distributions of R,,/!& 
that, in the fully turbulent part of the flow, can be identified with the total shear, 
are Reynolds-number dependent, contrary to what is found in a straight tube (Laufer 
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FIQURE 20(a). For caption me next page. 

1954). The S-shaped curve crossing the linear distribution for the straight tube is 
characteristic of the effect of undulations (Hsu & Kennedy 1971). 

The absence of an inertial-equilibrium region in the undulated tube led us to 
consider the magnitude of the shear stress/turbulent intensity ratio - U'V'/2k in the 
present flow. For an equilibrium layer this ratio is equal to about 0.15 (Hinze 1975). 
For several values of r /a ( s )  we calculated the mean value of this ratio over a 
wavelength. This result, plotted in figure 21, effectively indicates the global effect of 
the undulations. Straight-tube results (Laufer 1954) are also plotted for comparison. 
Experimental values of this ratio are always smaller than the value obtained in a 
straight tube. The same result is predicted numerically. Agreement between prediction 
and experiment is especially good in the bulk of the flow. In the wall region, 
discrepancies between calculations and experiments may be due to differences in 
shear-stress distributions already noticed near the crest of the undulations. The 
Reynolds-number effect is particularly appreciable at a radius larger than 0.5 a(z)  
and results in an increase of this ratio with increasing Reynolds numbers, which is 
opposite to what is observed in a straight tube. 
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FIGURE 20. Turbulent shear stress distribution. ( a )  Re, = 30000 (+ to ., experiments; 
-, calculation). ( b )  Re, = 115000 (0 to 0, experiments; -, calculation). 
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FIGURE 21. Longitudinal mean value of anisotropy coefficient: Re, = 30000 ( . . . . . . , experiments; 
, calculation) ; Re, = 115000 (----, experiments; ---, calculation) ; Laufer measure- 

ments (-, Re, = 40500; -.--.-, Re, = 427500). 
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5. Concluding remarks 
An experimental study, including measurements in air and visualizations in water, 

and a numerical prediction based on a k-e model have been developed for a complex 
turbulent shear flow : the turbulent flow through an axisymmetrical duct having 
streamwise periodic wall undulations with small amplitude and a wavelength of the 
order of magnitude of its mean diameter. The methodology has been described and 
a description given of the mean-velocity and pressure fields as well as of the 
turbulent-velocity field. In particular, mean velocities have been measured within the 
viscous sublayer and corrected for the effect of wall proximity on the hot wire. The 
wall friction has been deduced from these measurements. 

One of the main characteristics of this flow is the existence of flow reversal revealed 
by the use of a special two-wire probe and by flow visualization. The leading 
parameter is the flow Reynolds number which determines the extent and the intensity 
of flow reversal and in turn the mean distributions of pressure and velocity. 

Turbulent transfer, increasing with Reynolds number, is likely to reduce very 
strong reverse flows and at the same time to move the reattachment point upstream. 
Numerical predictions also account for this phenomenon. Moreover, calculations 
carried out in laminar flow have shown the opposite effect. 

Head losses at Reynolds numbers of 30000 and 115000 are respectively multiplied 
by a factor of about 2.5 and 1.5 if they are compared to head losses in a straight tube 
with the same respective flow rates. 

Radial distributions of pressure, between two successive crests, reflect wall-curva- 
ture variations. Moreover, pressure variations near the wall are found to be an order 
of magnitude higher than the mean-pressure drop over an undulation. As for 
mean-velocity distributions their evolution is governed by divergenhonvergent 
effects in the duct. This dependence does not allow the establishment of an 
inertial-equilibrium region within the flow which is undergoing continuous 
organization. 

The previous observations are supported by wall-shear-stress distributions : regions 
where the shear stress is either zero or very small are reduced when the velocity is 
increased. However, over an undulation, the mean wall shear stress remains below 
the value in an equivalent cylindrical duct. This wall-shear-stress evolution along an 
undulation is well described qualitatively by calculations and in particular the 
experimental locations of extrema are predicted correctly. 

Experimental results for the turbulent field have been obtained from single- and 
cross-wire measurements of velocity fluctuations. From these measurements, radial 
distributions of the turbulent kinetic energy were obtained at several cross-sections 
between two successive crests. It appears that the mean-energy level is distinctly 
higher than that which prevails in a straight tube at the same Reynolds number. This 
result is reinforced by numerical calculations. Experiments have shown (Chauve 
1981) that this increase in turbulence energy is associated with large values of the 
longitudinal velocity fluctuation. Numerical predictions allowed more accurate 
insight into local curvature effects. In  the vicinity of the wall, a region that is not 
accessible to measurement, these effects result in the growth of an energy peak within 
the diverging part of the duct and near the inflection point of the wall. The use of 
a curvature Richardson number in the turbulence model resulted in only a few 
changes in the numerical results. Turbulent-shear-stress distributions do not exhibit 
the linear behaviour found in a straight tube. The observed distributions are S-shaped 
and are lower near the axis and higher near the wall compared with the straight-tube 
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results. This kind of distribution is typical of undulation effects. Calculations have 
strongly overpredicted this effect in the immediate neighbourhood of the crest. 

The comparison between experiments and calculations indicates that the model we 
used has some shortcomings for a detailed description of the turbulent field ; it does 
however permit a good estimate of global mean values. Further, numerical predictions 
are, roughly speaking, more satisfactory at a Reynolds number of 115000 for which 
the reverse flow is weaker. Taking into account curvature effects through a Richardson 
number as proposed by Launder (1975) did not noticeably improve the numerical 
predictions. We recall in particular that numerical calculations have allowed the 
prediction of a recirculating-flow zone which extends beyond the point of inflection 
at the wall as well as the effect of Reynolds number on this zone. Since numerical 
predictions efficiently yield a fair description of the most important mean values, the 
k-6 model thus allows extrapolation of experimental results to similar cases by 
varying geometrical and dynamical parameters of the problem, for which experimental 
investigations would be long and expensive. 

It thus appears that at the present time, in such a complex flow, the k-E model 
remains a good compromise between reliability of predictions and universality of 
applicability. In  fact, it can give overall agreement between experiments and 
calculations, but the detailed behaviour of some local quantities can be wrong, as i t  
is the case here for vertical stress distributions a t  the crests. 

Improvement of numerical predictions would require a more complete description 
of the turbulent field, but such an approach would necessitate the development and 
testing of new and more elaborate prediction methods. 

The work reported herein has been supported by ‘Commissariat & 1’Energie 
Atomique’ (C. E. N. Saclay, France). This support is gratefully acknowledged. 
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